Copied to
clipboard

G = C2×C324D6order 216 = 23·33

Direct product of C2 and C324D6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C324D6, C334C23, C62S32, C3⋊S33D6, (C3×C6)⋊5D6, C326(C22×S3), (C32×C6)⋊3C22, C33(C2×S32), (C2×C3⋊S3)⋊7S3, (C6×C3⋊S3)⋊9C2, (C3×C3⋊S3)⋊4C22, SmallGroup(216,172)

Series: Derived Chief Lower central Upper central

C1C33 — C2×C324D6
C1C3C32C33C3×C3⋊S3C324D6 — C2×C324D6
C33 — C2×C324D6
C1C2

Generators and relations for C2×C324D6
 G = < a,b,c,d,e | a2=b3=c3=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 772 in 162 conjugacy classes, 39 normal (5 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C23, C32, C32, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C33, S32, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, C2×S32, C324D6, C6×C3⋊S3, C2×C324D6
Quotients: C1, C2, C22, S3, C23, D6, C22×S3, S32, C2×S32, C324D6, C2×C324D6

Character table of C2×C324D6

 class 12A2B2C2D2E2F2G3A3B3C3D3E3F3G3H6A6B6C6D6E6F6G6H6I6J6K6L6M6N
 size 119999992224444422244444181818181818
ρ1111111111111111111111111111111    trivial
ρ211-1-1-111-11111111111111111-11-1-11-1    linear of order 2
ρ31-11-111-1-111111111-1-1-1-1-1-1-1-11-1-1-111    linear of order 2
ρ41-1-11-11-1111111111-1-1-1-1-1-1-1-1-1-1111-1    linear of order 2
ρ511-111-1-1-111111111111111111-11-1-1-1    linear of order 2
ρ6111-1-1-1-111111111111111111-1-1-11-11    linear of order 2
ρ71-1-1-11-11111111111-1-1-1-1-1-1-1-111-11-1-1    linear of order 2
ρ81-111-1-11-111111111-1-1-1-1-1-1-1-1-111-1-11    linear of order 2
ρ92200022022-1-1-12-1-12-12-1-1-12-10-100-10    orthogonal lifted from S3
ρ102-20002-2022-1-1-12-1-1-21-2111-210100-10    orthogonal lifted from D6
ρ112-220000-2-122-12-1-1-1-2-211111-200010-1    orthogonal lifted from D6
ρ1222-20000-2-122-12-1-1-122-1-1-1-1-12000101    orthogonal lifted from D6
ρ132-2000-22022-1-1-12-1-1-21-2111-210-10010    orthogonal lifted from D6
ρ1422000-2-2022-1-1-12-1-12-12-1-1-12-1010010    orthogonal lifted from D6
ρ152-20-220002-12-1-1-12-11-2-2-21111-101000    orthogonal lifted from D6
ρ16220220002-12-1-1-12-1-1222-1-1-1-1-10-1000    orthogonal lifted from S3
ρ172-2-200002-122-12-1-1-1-2-211111-2000-101    orthogonal lifted from D6
ρ182-202-20002-12-1-1-12-11-2-2-2111110-1000    orthogonal lifted from D6
ρ19220-2-20002-12-1-1-12-1-1222-1-1-1-1101000    orthogonal lifted from D6
ρ2022200002-122-12-1-1-122-1-1-1-1-12000-10-1    orthogonal lifted from S3
ρ214-40000004-2-211-2-2122-42-1-12-1000000    orthogonal lifted from C2×S32
ρ224-4000000-2-241-21-212-422-1-1-12000000    orthogonal lifted from C2×S32
ρ2344000000-2-241-21-21-24-2-2111-2000000    orthogonal lifted from S32
ρ2444000000-24-21-2-2114-2-2111-2-2000000    orthogonal lifted from S32
ρ25440000004-2-211-2-21-2-24-211-21000000    orthogonal lifted from S32
ρ264-4000000-24-21-2-211-422-1-1-122000000    orthogonal lifted from C2×S32
ρ274-4000000-2-2-2-1-3-3/2111-1+3-3/2222-11-3-3/21+3-3/2-1-1000000    complex faithful
ρ2844000000-2-2-2-1-3-3/2111-1+3-3/2-2-2-21-1+3-3/2-1-3-3/211000000    complex lifted from C324D6
ρ2944000000-2-2-2-1+3-3/2111-1-3-3/2-2-2-21-1-3-3/2-1+3-3/211000000    complex lifted from C324D6
ρ304-4000000-2-2-2-1+3-3/2111-1-3-3/2222-11+3-3/21-3-3/2-1-1000000    complex faithful

Permutation representations of C2×C324D6
On 24 points - transitive group 24T548
Generators in S24
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)
(1 5 3)(2 4 6)(7 11 9)(8 10 12)(13 15 17)(14 18 16)(19 21 23)(20 24 22)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 23 21)(20 22 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 21)(2 20)(3 19)(4 24)(5 23)(6 22)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)

G:=sub<Sym(24)| (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,23,21)(20,22,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,24)(5,23)(6,22)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)>;

G:=Group( (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,23,21)(20,22,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,24)(5,23)(6,22)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18) );

G=PermutationGroup([[(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,22),(8,23),(9,24),(10,19),(11,20),(12,21)], [(1,5,3),(2,4,6),(7,11,9),(8,10,12),(13,15,17),(14,18,16),(19,21,23),(20,24,22)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,23,21),(20,22,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,21),(2,20),(3,19),(4,24),(5,23),(6,22),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18)]])

G:=TransitiveGroup(24,548);

C2×C324D6 is a maximal subgroup of
C3⋊S3.2D12  (C3×C6).8D12  Dic36S32  D6⋊S32  C3⋊S34D12  C123S32  C6224D6  C2×S33
C2×C324D6 is a maximal quotient of
C3⋊S34Dic6  C12⋊S312S3  C12.95S32  C123S32  C62.96D6  C6224D6

Matrix representation of C2×C324D6 in GL4(𝔽7) generated by

6000
0600
0060
0006
,
5323
1330
4406
0004
,
3632
6342
0020
0004
,
2610
6563
2562
3341
,
2443
2216
5215
6642
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[2,6,2,3,6,5,5,3,1,6,6,4,0,3,2,1],[2,2,5,6,4,2,2,6,4,1,1,4,3,6,5,2] >;

C2×C324D6 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_4D_6
% in TeX

G:=Group("C2xC3^2:4D6");
// GroupNames label

G:=SmallGroup(216,172);
// by ID

G=gap.SmallGroup(216,172);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,387,201,730,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

Export

Character table of C2×C324D6 in TeX

׿
×
𝔽