direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C32⋊4D6, C33⋊4C23, C6⋊2S32, C3⋊S3⋊3D6, (C3×C6)⋊5D6, C32⋊6(C22×S3), (C32×C6)⋊3C22, C3⋊3(C2×S32), (C2×C3⋊S3)⋊7S3, (C6×C3⋊S3)⋊9C2, (C3×C3⋊S3)⋊4C22, SmallGroup(216,172)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C3×C3⋊S3 — C32⋊4D6 — C2×C32⋊4D6 |
C33 — C2×C32⋊4D6 |
Generators and relations for C2×C32⋊4D6
G = < a,b,c,d,e | a2=b3=c3=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 772 in 162 conjugacy classes, 39 normal (5 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C23, C32, C32, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C33, S32, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, C2×S32, C32⋊4D6, C6×C3⋊S3, C2×C32⋊4D6
Quotients: C1, C2, C22, S3, C23, D6, C22×S3, S32, C2×S32, C32⋊4D6, C2×C32⋊4D6
Character table of C2×C32⋊4D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | |
size | 1 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | -1 | 0 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -2 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 0 | 1 | 0 | 0 | -1 | 0 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 1 | 0 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -2 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 0 | -1 | 0 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 1 | 0 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | -1 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ17 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | -1 | 0 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | -2 | 1 | 2 | 2 | -4 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 4 | 1 | -2 | 1 | -2 | 1 | 2 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 4 | 1 | -2 | 1 | -2 | 1 | -2 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ24 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 1 | -2 | -2 | 1 | 1 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ25 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | -2 | 1 | -2 | -2 | 4 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 1 | -2 | -2 | 1 | 1 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -1-3√-3/2 | 1 | 1 | 1 | -1+3√-3/2 | 2 | 2 | 2 | -1 | 1-3√-3/2 | 1+3√-3/2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -1-3√-3/2 | 1 | 1 | 1 | -1+3√-3/2 | -2 | -2 | -2 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ29 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -1+3√-3/2 | 1 | 1 | 1 | -1-3√-3/2 | -2 | -2 | -2 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -1+3√-3/2 | 1 | 1 | 1 | -1-3√-3/2 | 2 | 2 | 2 | -1 | 1+3√-3/2 | 1-3√-3/2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)
(1 5 3)(2 4 6)(7 11 9)(8 10 12)(13 15 17)(14 18 16)(19 21 23)(20 24 22)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 23 21)(20 22 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 21)(2 20)(3 19)(4 24)(5 23)(6 22)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)
G:=sub<Sym(24)| (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,23,21)(20,22,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,24)(5,23)(6,22)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)>;
G:=Group( (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,15,17)(14,18,16)(19,21,23)(20,24,22), (1,5,3)(2,4,6)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,23,21)(20,22,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,24)(5,23)(6,22)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18) );
G=PermutationGroup([[(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,22),(8,23),(9,24),(10,19),(11,20),(12,21)], [(1,5,3),(2,4,6),(7,11,9),(8,10,12),(13,15,17),(14,18,16),(19,21,23),(20,24,22)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,23,21),(20,22,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,21),(2,20),(3,19),(4,24),(5,23),(6,22),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18)]])
G:=TransitiveGroup(24,548);
C2×C32⋊4D6 is a maximal subgroup of
C3⋊S3.2D12 (C3×C6).8D12 Dic3⋊6S32 D6⋊S32 C3⋊S3⋊4D12 C12⋊3S32 C62⋊24D6 C2×S33
C2×C32⋊4D6 is a maximal quotient of
C3⋊S3⋊4Dic6 C12⋊S3⋊12S3 C12.95S32 C12⋊3S32 C62.96D6 C62⋊24D6
Matrix representation of C2×C32⋊4D6 ►in GL4(𝔽7) generated by
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
5 | 3 | 2 | 3 |
1 | 3 | 3 | 0 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
2 | 6 | 1 | 0 |
6 | 5 | 6 | 3 |
2 | 5 | 6 | 2 |
3 | 3 | 4 | 1 |
2 | 4 | 4 | 3 |
2 | 2 | 1 | 6 |
5 | 2 | 1 | 5 |
6 | 6 | 4 | 2 |
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[2,6,2,3,6,5,5,3,1,6,6,4,0,3,2,1],[2,2,5,6,4,2,2,6,4,1,1,4,3,6,5,2] >;
C2×C32⋊4D6 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_4D_6
% in TeX
G:=Group("C2xC3^2:4D6");
// GroupNames label
G:=SmallGroup(216,172);
// by ID
G=gap.SmallGroup(216,172);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,387,201,730,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export